コンテンツへスキップ

[python]データのインポートと極座標系のグラフを表示

CSVファイルを指定して極座標系でグラフを描き、画像に出力するまでをやります。

ファイルを指定して極座標系でグラフを描き、画像に出力するまでをやります。

目次

  • 作業環境
  • CSV
  • 極座標系
  • ファイルのインポート

作業環境

  • anaconda 1.7.2
  • python 3.7.3
  • vscodeとexcel

jupyter notebookというIPythonを使用します。

jupyter notebook

jupyter notebook はサーバを立ててwebブラウザ上で文章を表示させるものです。 テキストエディタと同じ感覚で使用でき、IPythonの機能であるコードの解説の表示や図を含む実行結果をまとめて表示できます。

図を描くときは、実行してすぐ図を確認できるjupyterが楽です。anacondaをインストールするとまとめてインストールしてくれます。

CSV

csvって何

カンマで区切られた数値です。

VS code上で見やすく

csvはカンマで区切られているだけのデータなので見にくいです。そこで私が使っているvscode拡張機能を紹介します。

Rainbow CSV

Rainbow CSV

Excel VIewer

Excel viewer

ファイルを右クリックかcommand palletでpreviewが見れます。

極座標系の表示

=>matplotlib.pyplot.polar -matplotlib

import matplotlib.pyplot as plt
import numpy as np

r = 1
theta = 45
theta_rad = np.deg2rad(theta)# 角度をradに変換

ax=plt.subplot(projection="polar") #軸を表示
ax.scatter(theta_rad, r, c="red", s =15)

theta = np.arange(0.0, 4*2*np.pi, 0.01) #角度
r = 0.5*theta #半径
plt.polar(theta,r) # 極座標グラフのプロット

plt.savefig('PolarCoordinate.png')
plt.show()

subplotについて

fig.add_subplot(行,列,場所)を表します。(1,2,1)では列が(つまり縦方向に)半分になったグラフのうち1つめ(上側)が1つ表示されるらしいです。

import matplotlib.pyplot as plt

fig = plt.figure()
fig.add_subplot(1,2,1)
plt.show()
fig.add_subplot(1,2,1)
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)

ファイルのインポート

使っているデータは私が他の目的で作ったデータを適当に弄った意味のない数値列です。

import pandas as pd

df = pd.read_csv('fact_x2.csv')
print(df)
     turn[] length[mm]   total [mm]  radius[mm]    deg[deg]    \
0         0       0.00         0.00      0.0000    0.000000     NaN   
1         1      11.45        11.45      7.4000   88.653605     NaN   
2         1       0.45        11.90      7.4000   92.137808     NaN   
3         1      11.45        23.35      7.4000  180.791412     NaN   

~割愛~

117      17      16.10       854.45      9.4496   52.276096     NaN   
118      17       1.15       855.60      9.4496   59.248893     NaN   
119      17      16.10       871.70      9.4496  156.868057     NaN   

[120 rows x 10 columns]
import pandas as pd

df = pd.read_csv('fact_x2.csv')
print(df['turn[]'])
0       0
1       1
2       1
3       1

~割愛~

117    17
118    17
119    17
Name: turn[], Length: 120, dtype: int64

​指定できるのは行(Colum)。 横に伸びてる方です。

与える角度はdegじゃなくてradですので注意。

完成

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv('fact_x2.csv')
r = df['Radius[mm]']
deg = df['Deg[deg]']
radian = np.deg2rad(deg)

fig = plt.figure(figsize=(10, 10))#新しい図面
ax = fig.add_subplot(111, projection='polar')#軸の表示
ax.plot(radian,r, '-o')
i=2
while i < 122:
    ax.plot([radian[i],radian[i-1]],[r[i], r[i-1]], 'or-')
    i +=2
print(np.pi)
plt.savefig('PolarCoordinate.png')
plt.show()

関数化

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

"""
CSVファイルから極座標系のグラフをプロットする
入力:(CSVファイル名, 出力画像ファイル名,半径、角度)
出力:出力画像ファイル名.png
"""
def polar(in_file,out_file,param_r,param_theta):
    df = pd.read_csv(in_file) #ファイル読み込み
    r = df[param_r]
    deg = df[param_theta]
    radian = np.deg2rad(deg) #deg をradに変換
    Len=len(r)#配列の長さを取得

    fig = plt.figure(figsize=(10, 10))#新しい図面
    ax = fig.add_subplot(111, projection='polar')#軸の表示
    ax.plot(radian,r, '-o') 
    i=2
    while i < Len: #1つ飛ばしどうしを赤線で結ぶ
        ax.plot([radian[i],radian[i-1]],[r[i], r[i-1]], 'xr-')
        i +=2
    plt.savefig(out_file)
    plt.show()

polar('test.csv','Polar_test.png','Radius[mm]','Deg[deg]')

雑記

進捗がない!!!!!!!!!!!
[追記](2019/9/19)「完成」のコードを変更しました

参考

コメントを残す

メールアドレスが公開されることはありません。