コンテンツへスキップ

ジャンル:電子回路

10月28日。三週目は実験でやった回路やら作ろうと思ってた回路やらをまとめます。

シミュレーター

僕はシュミューターとしてLTSpiceを使わせていただいてます。これについてはこちらにまとめます。

ことはじめ_電子工作とシミュレーション

発振回路その1

CR位相型発振回路。回路図はこれです。学校の課題で出たヤツですね。

原理

おおざっぱに。この回路は位相回路部(左側)と反転増幅回路部(右側)に分かれています。反転増幅回路では名前のとおり信号が大きさは増幅されつつ位相は+から-に、あるいは-から+に変化します。つまり、位相は180度変化しています。 ここに、さらに180度位相が変わる位相回路をくっつけることで、全体で正帰還(ポジティブフィードバック)が掛かります。少し+になったらさらに+になる、ということになるので、次第に大きくなります。

だんだん+-にぶれながら大きくなり、条件を満たすと安定した信号を発するようになります。(スタートがごくわずかなオフセットで、それが大きくなるんだそろうとは思いますが、なんで+-を繰り返す正弦波になるのかはイメージがわきませんが内緒です。振幅が大きくなっているとは言え、微笑範囲では一度大きくなった電圧が自動的に小さくなって-へ向かうのはなぜ?) ただし、オペアンプを使っていますが、オペアンプの電源より大きくすることは出来ないので、上限がつきます。発振条件は以下の通りです。途中式は省略!(レポートには書いた)

利得Av < -29

振幅f = 1/(2 * &pi * C *R)

オペアンプの反転増幅回路や位相発信回路については参考サイトなどを参考にしてください

回路

回路はこんな感じ。前述のシミュレーションソフトLTSpiceで書きました。

シミュレーション

シミュレーションで過渡応答を調べます。

始めはこんな感じで発振しませんでした。利得が小さすぎてダメ。位相回路の利得は-1/29で、これより小さいと収束するのは理論通りですが、実際の回路では他の損失があるので分母はより大きくなります。 と言うわけで第二弾はこれ。これはスルーレートに比べて利得が大きすぎた。(ちなみにシミュレーションで理想オペアンプを使ったところ発振しませんでした。注意!)

なので調節してこんな感じ。発信していますね。でも、オペアンプが増幅器であるといっても電源より大きくすることはできません。なので波形の頂点でつぶれてしまっているのがみえますね。(見にくい)。増幅率である利得を調節すると、こんな感じになります。

もともと制度の高くない回路なのでこんなもんですね。実物は作りません。

発振回路その2

これはがらっと変わってオペアンプを使いません。トランジスタだけでLチカしたい回路です。弛張回路というらしいです。これを使ってクリスマスまでにツリーを作るんだ!

原理

簡単に説明すると、コンデンサとnpn型トランジスタとpnp型トランジスタを使って、ししおどしのように電力を貯めて流すと言うことを繰り返す回路のようです。コンデンサと抵抗器のみが動作する期間は最も単純なCR回路と同形ですね。コンデンサのキャパシタンスと抵抗値でコンデンサに電力を貯める時間をコントロール出来そうです。

シミュレーション

実際にやってみた。

青い線がLEDに流れる電流で、緑の線がLEDと並行につながっているコンデンサの電圧です。LEDは一瞬光って0mA(=0V)に戻る感じですね。 ちなみに、東芝の2SC1815シリーズとそれに対応するpnp型である2SA1015のパラメータを入れたものを知り合いからもらっていたのでそれを使ってシミュレーションしてたんですが、ピクリとも動きませんでした。なんででしょうね。

ねがてぃぶろぐ LTspiceクイック・スタート – FC2を参考にしたらうまくいきました。また、CRの値をかえて遅くなりそうだったので、変えてみたときの信号が以下です。

わーい

実験

オペアンプを使用する発振回路では消費電力が割高になるだろうということで、弛張回路をつかってチカチカするツリーを作りたいですねぇというのがきっかけでしたが、部品が届けば来週ハロウィンに間に合うかもですね!

また次回 => 発振回路をつくりたい_2

参考文献

オペアンプ | 反転増幅回路 – 電子回路

CR移相発振回路の設計

オペアンプの基礎マスター (基礎マスターシリーズ) 堀 桂太郎 電気書院

こた電 こたつぁーの電子工作 LED を点滅させよう

トランジスタによる発振回路を利用した LED1個点滅回路

ねがてぃぶろぐ LTspiceクイック・スタート – FC2

雑談

先週は文化祭と応用情報技術者試験と実験レポと部活が重なったため特に何も出来ませんでした。無念。応情の勉強もたいして出来ませんでした。これは落ちた。 ちなみに基本情報技術者試験は2018年春に受かりました(自慢)。

追記(2018/2/11)写真を大きくしました。

追記(2019/3/18) 段落構成を変更しました。内容は変更ありません。

10月28日。ジャンル:電子工作

基本的な道具

電子工作はスタートするのが大変ではないでしょうか?俺は何か始める時にはまず道具をひとまず集めるんですが、実際初めてみたときに用意したものを挙げていきます。

  • 半田ごて、半田吸引器、スポンジ、台、はんだ
  • テスタ
  • ラジオペンチ
  • ニッパ
  • ピンセット
  • テープ
  • ケース

半田付けとブレッドボード

半田付けのことから書きましたが、半田付けをしなくてもオッケーなのがブレッドボードです。穴に部品を刺せば動作確認できますので便利。これです。部品だけで無くブレッドボードと線も買っておきました。パーツ一般/基板・ブレッドボード/ブレッドボード(基本ユニット) 秋月電子通商-電子 …

シミュレーター

回路を設計し田後、上手くいっているかを確かめるには実験するしか有りませんが、そうすると毎回さまざまな値の抵抗を買って置かなければいけません。そういうときにシミュレーションが出来るとハイパー便利です。

昔はかなり高かったらしいシミュレータですが、フリーで出てる物もありますので紹介します。LTSpiceというシミュレーターです。リニアテクノロジという電子部品メーカーが自社の製品を買ってもあったり技術者を育成するために開発したらしいですが、リニアテクノロジは2017年にアナログデバイセズに買収されたため現在はアナログデバイセズのHPからダウンロード出来ます。自社製品しか登録させていないので東芝の2SC1815なんてメジャーなトランジスタは入っていませんが、似たような製品も有りますし、パラメーターを入力すれば新しく登録することも出来ます。

ちなみに他の会社から出ているフリーではないものは数百万円らしいので、無料で出来るなんて感謝感激!アナログデバイセスの部品を買って恩返し、するかどうかは別なお話。

spice example

LTspice | 設計支援| アナログ・デバイセズ – Analog Devices

おまけ E系列とか

部品の値を関係式から計算してもその通りの値の部品が有るわけではありません。市販されて居るのは以下に示す値になってます。なんでこんな微妙な値なのかというと、たとえばE6系は「10の6乗根の自然数乗の値」で、対数的に等間隔らしい。これが使いやすいとか。いまだその恩恵を感じたことはありませんが、そういう物らしい。

表:E標準数

E3E6E12E24
1.01.01.01.0
1.1
1.21.2
1.3
1.51.51.5
1.6
1.81.8
2.0
2.22.22.22.2
2.4
2.72.7
3.0
3.33.33.3
3.6
3.93.9
4.3
4.74.74.74.7
5.1
5.65.6
6.2
6.86.86.8
7.5
8.28.2
9.1

追記(2019/3/18) 段落構成を変更しました。内容は変更ありません。

ジャンル:電子工作

12月26日 電子工作で便利だと思うので電源を用意しました。今回はCD12V電源が有れば十分ですが、可変にしようと思います。

動機

電源装置を使いに学校に行くのは面倒

材料

  • DCDC変圧器(降圧型)変換器はコンバータとも呼ばれます。買った物はzmart ステップダウン コンバータ 5-40V〜1.2-35V 9A 300W 降圧 電源 モジュール。壊れるのは嫌なのでちょっといいやつ。安いのは300円くらいのが有りました。
  • ACDC変換器19V出力PCのおまけ
  • ワニグチクリップとDCコネクタくっつけました。DCコネクタは内側が+で外側がGNDです。同軸ケーブルとかは回路なので+とGND(-)が必要ですが、ついでにGNDで線を覆って電気的に保護しているらしいですね。
  • 導線

作る

くっつけるだけ。写真の青いところには半田がくっつかなかったので、基盤裏面に直付けしました。可変抵抗のつまみを回すと電圧が変わります。

電源について

家庭のコンセントはご存じの通りAC(交流)100v。これはかなり高電圧です。

理由

電力P、電圧V、電流I、抵抗Rとして、
P=VI=R*I^2=V^2/R (V=RI)
電気を発電所から送るとき、電力ロスを小さくしたいです。
導線中の電力損失もまた電力なので、電流が小さい方が損失が小さいです。なので、小電流大電圧で伝送します。
詳しそうなサイトは高電圧送電が有利なわけ – FNの高校物理

コンセントから使えると便利なので、パソコンの変圧器を使ってDC19Vにした後で可変DCDCコンバータで使いやすくしようと思います。

変換器について

今回使って居るのは降圧CDCDコンバータですが、昇圧、昇降圧型があります。昇圧降圧の原理は様々あります。 今回買ったタイプはDCDC降圧型の中で特に簡単な物です。コイルに電気を流すと、電磁誘導の法則によってコイルに誘導電流が流れ、電圧が発生します。このとき発生する誘導電圧は巻き数比で決定されます。見た目でコイルが一つなので、たぶん単巻きです。 これに詳しめに書いてあります。〔機械009〕単巻変圧器とは|電験3種ネット – 電験三種

んで、おそらくそれで出来た電圧を、可変抵抗器で分圧しているんだと思いますが確認は出来ませんでした。このタイプでは入力電圧より大きい電圧は原理的に発生できませんので、用途に合わせて買う必要があります。可変抵抗で出力電圧を変えられますのでべんりですね。

雑記

注文してから気づいたんですが、俺はACDC変換器の12V出力も持ってました。なので、12Vが必要ならそれにDCコネクタ+わに口クリップでおっけーでした。 3.3Vにもできたので便利そうです。

追記(2019/3/18) 段落構成を変更しました。内容は変更ありません。